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Abstract The problem of thermal explosion arising from a spatially homogeneous
reduced five steps reaction kinetic model, which comprises of the chain initiation,
chain propagation/branching and chain termination steps is considered. By assuming
realistic approximations, the pertubation technique was used to obtain expressions for
thermal ignition time for the adiabatic system. In the non-adiabatic system, expres-
sions for the critical heat loss parameter and the ignition temperature in the line of
Semenov theory have been obtained. Analysis of the system involving some parame-
ters, and the contributions of the heat released due to the termination reactions on the
behaviour of the ignition times and Semenov parameters have been carried out and
expressed graphically. Apart from confirming known results in literature, the results
shed more light on hitherto unknown behaviour.

Keywords Thermal ignition · Initiation · Reaction kinetics ·
Propagation/branching · Termination

Nomenclature
CP Specific heat capacity at constant pressure (JKg−1K−1)
Di Diffusion coefficients for species (m2s−1)
Ei Activation energy for i reaction, i = 0, 1, 2, 3, 4 (Jmol−1)
F Fuel (Kgmol−1)
K Thermal conductivity (Wm−1K−1)
M Inert body (Kgmol−1)
Pj Reaction products, j = 1, 2, (Kgmol−1)
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Q Overall heat released (J)
Qi Exothermicity (heat evoloved) in the i reactions (J)
Q+ Heat released due to reaction in the non-adiabatic system (J)
Q− Heat loss to the environment in the non-adiabatic system (J)
qi = Qi

Q , ratio of heat in i reactions to the overall
R Universal gas constant (JK−1mol−1)
R j Radicals, j = 1, 2, (Kgmol−1)
r = E2/E1, ratio of activation energy of reactions II to I
S Surface area (m2)
T, T0 Temperature, initial temperature (K)
t Time (s)
v Velocity (ms−1)
V Volume (m3)
WY Global reaction rate (mol−1s−1m−3)
wi Local reaction rate for i reaction (mol−1s−1m−3)
Y Molar concentration of species or reactant (Kgmol−1)

Greek letters
α Reduced ambient temperature

β1, β2 = QYR10
(CP T0)

,
QMR2 YR20
(CP T0 MF )

δi Dimensionless parameter
θ, θI , θE = T −T0

εT0
dimensionless, ignition, extinction temperatures

λi Pre-exponential factor for i reaction (s−1)
τ, τcr Dimensionless time, ignition time
ρ Density (Kgm−3)

 Semenov parameter
χ Heat transfer coefficient (J/s)

1 Introduction

The need for model with more detailed chemistry to represent the combustion of
reactants(e.g hydrocarbon) has never been greater than it is today, as combustion sci-
entists and engineers exploit computational method for the design and prediction of
performance of practical combustion systems especially with regard to economical
operation and minimisation of environmental pollution. Although the one-step model
has served combustion theory well, particularly in the context of activation energy
asymptotics, the neglect of radical or intermediary specie has precluded the modeling
of many important phenomena. Thus, in recent years, there has been growing interest
within the mathematical combustion community in the study of reduced mechanism.
The majority of works dealing with such problems in combustion have been in the
areas of spatially distributed system [1–12] and the spatially homogeneous problems
[1,13–21].
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The need for intensive studies along the line of reduced chemistry for a spatially
homogeneous system containing an intermediate specie for two or more reactions steps
are well documented in literature [1,13,21–23]. In the late 1960s, [16] developed the
first reduced kinetic model for the oxidation of hydrocarbon fuels that qualitatively
described many features observed experimentally. The mathematical model proved
reliable for predictions of the oxidation characteristics, explosion limits, oscillations,
and the results also validated experimental observations. As a further development,
[17], extended [16] to a system with two reactive intermediate species by including a
high energy autocatalytic reaction aim at promoting chain branching. Recently, [20]
showed that [17] is defective as an extension of [16] because it does not simulate
closed-vessel experiments. In a similar trend, development in the kinetic modeling for
hydrogen oxidation has received remarkable attentions. For instance, using a two-step
reaction model containing an intermediate specie, [14] considered the asymptotic anal-
ysis of a spatially homogeneous model of a non-isothermal branched-chain reaction
leading to explosion time. Furthermore, [19] extended [14] to a four-steps to include
two additional termination steps leading to fresh determination of criticality of certain
parameters and explosion time.

Motivated by the above, we examine a spatially homogeneous two-radical reac-
tions mechanism that accommodates initiation, branching, propagation and termina-
tion steps. Thus, the proposed model mechanism, which is an oxidation of reactant(F)
with two intermidates species is given by

F → R1, E0 → ∞, (O)

F + R1 → R2, E1 → ∞, (I)

m R2 + O2 → 2R1, E2 → ∞, (II)

R2 + O2 + M → P1 + M, E1 = 0, (III)

2R1 + M → P2 + M, E1 = 0. (IV)

Here R1, R2 stand for radicals, F is the fuel, M is the inert third body, P1, P2 are
the reactions products, O2 is the oxygen molecule. Equation (I) describes the process
of fuel consumption, (II) represents branching or propagation depending on the value
of m. In particular, if m = 1, (II) is a chain branching step and m = 2, is a chain prop-
agation step. Reactions (III)–(IV) are regarded to as the radical consumption steps.
Thus, the radical R1 and R2 are being converted to stable products. The initiation
step (O) are often neglected, since it only initiates the reactions [20]. Note that in this
scheme, as in many reduced schemes, the chemical ‘reactions’ do not represent spe-
cific steps in the oxidation mechanism. However, for m = 1 it may be associated with
the hydrogen combustion [24] (page 410) or adapted for the methane combustions [6].

2 Problem formulation

The proposed model reactions mechanism is described by the usual variable T denot-
ing the temperature of the mixture, YF , representing the mass fraction for reac-
tant(fuel), while YR1 , YR2 representing the mass fraction of the radical 1 and radical 2
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respectively. The mass and conservation equations for fuel, the intermediate species
(YF , YR1 , YR2 ) and the temperature (T ) for the kinetic model (O–I V ) are [20]

dρ

dt
= 0, (2.0)

dYF

dt
= MF

ρ
WF , (2.1)

dYR1

dt
= MR1

ρ
WR1 , (2.2)

dYR2

dt
= MR2

ρ
WR2 , (2.3)

dT

dt
= 1

ρCP

4∑

i=1

Qiwi − χ S

ρC pV
(T − T0) , (2.4)

where ρ is the constant density, CP is the specific heat capacity at constant pressure,
Qi (i = 1, 2, 3, 4) are the quantities of heat released by each step and MF , MR1 , MR2

are the molecular weights of fuel, radicals 1 and 2 respectively, while E1 and E2 are the
activation energies for the branching (or propagation) step. The global reaction rates
WF , WR1 , WR2 and the local reaction rates, w1, w2, w3 and w4 for Eqs. (2.1)–(2.4)
are defined as follows;

WF = −w1,

WR1 = −w1 + 2w2 − 2w4,

WR2 = w1 − mw2 − w3, (2.5)

where

w1 = λ1ρ
2(YF/MF )(YR1/MR1) exp(−E1/RT ),

w2 = λ2ρ
m+1(YR2/MR2)

m(YO2/MO2) exp(−E2/RT ),

w3 = λ3ρ
3(1/M)(YR2/MR2)(YO2/MO2),

w4 = λ4ρ
3(YR1/MR1)

2(1/M). (2.6)

The Eqs. (2.0)–(2.4) are the governing equations for the model under consideration,
where (2.0) is the continuity equation, (2.1)–(2.3) are the species equations and (2.4) is
the energy (or tempearture) equation. The momentum balance of the separate species
will not be written down since they play no role in the sequel and no momentum is
created by the chemical reactions [25].

3 Dimensionless homogeneous reaction system

The dimensional analysis has served as conceptual tool to understand physical situa-
tions involving certain physical quantities and also used to form reasonable hypotheses
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about complex physical situations that can be tested by experiment or by more devel-
oped theories of the phenomena described by relations such as

dYF/dt = MF/ρWF ,

dYR1/dt = MR1/ρWR1 ,

dYR2/dt = MR2/ρWR2 ,

dT /dt = 1/(ρCP )

4∑

i=1

Qi Wi − χ S

ρC pV
(T − T0) . (3.1)

In explicit forms, (3.1) becomes

dYF/dt = −MF/ρ[λ1ρ
2(YF/MF )(YR1/MR1) exp(−E1/RT )],

dYR1/dt = MR1/ρ[−λ1ρ
2(YF/MF )(YR1/MR1) exp(−E1/(RT ))

+2λ2ρ
m+1(YR2/MR2)

m(YO2/MO2) exp(−E2/(RT ))]
+MR1/ρ[−2λ4ρ

3(1/M)(YR1/MR1)
2],

dYR2/dt = MR2/ρ[λ1ρ
2(YF/MF )(YR1/MR1) exp(−E1/(RT ))

−mλ2ρ
m+1(YR2/MR2)

m(YO2/MO2) exp(−E2/(RT ))]
+MR2/ρ[−λ3ρ

3(1/M)(YR2/MR2)(YO2/MO2)],
dT /dt = 1/(ρCP )[Q1λ1ρ

2(YF/MF )(YR1/MR1) exp(−E1/(RT ))

+Q2λ2ρ
m+1(YR2/MR2)

m(YO2/MO2) exp(−E2/(RT ))]
+MR1/(ρCP )[Q3λ3ρ

3(1/M)(YR2/MR2)(YO2/MO2)

+Q4λ4ρ
3(YR1/MR1)

2(1/M)] − χ S

ρC pV
(T − T0) , (3.2)

where the initial conditions are

YF (0) = YF0, YR1(0) = YR10 , YR2(0) = YR20 , and T (0) = T0. (3.3)

We may non-dimensionalize (3.2)–(3.3) using the following,

θ = (T − T0)/(αT0), YF = (CP T0 MF )/(QMR1)X,

YR1 = CP T0/QY, YR2 = (CP T0 MF )/(QMR2)Z ,

t = (MF exp(1/α)/(ρYF0λ1)τ, r = E2/E1 and α = RT0/E1. (3.4)

After substituting (3.4) into (3.2), we have

d X

dτ
= − 1

δ1
exp

(
θ

1 + αθ

)
XY,

dY

dτ
= − 1

δ1
exp

(
θ

1 + αθ

)
XY + 2δ2

μ
exp

(
rθ

1 + αθ

)
Zm − 2δ4Y 2,
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d Z

dτ
= μ

δ1
exp

(
θ

1 + αθ

)
XY − mδ2 exp

(
rθ

1 + αθ

)
Zm − δ3 Z ,

dθ

dτ
= q1

αδ1
exp

(
θ

1 + αθ

)
XY + q2δ2

αμ
exp

(
rθ

1 + αθ

)
Zm + q3δ3

αμ
Z + q4δ4

α
Y 2

− q1δ10


αδ1
θ, (3.5)

and the initial conditions

X (0) = δ1, Y (0) = β1, Z(0) = β2 and θ(0) = 0, (3.6)

where

δ1 = (QMR1YF0)/(CP T0 MF ), δ10 = Qδ1

ρCP T0
,

1



= S RT 2

0 χ

CF0λ1 Q1V E1
exp

(
1

α

)
,

δ2 = λ2/λ1YO2 MF/(MO2 YF0)
(
(ρCP T0 MF )/(QM2

R2
)
)m−1

exp(
(1 − r)

α
),

δ3 = λ3/λ1(ρY02 MF )/(M MO2 YF0) exp(1/α), μ = M2
R2

/(MR1 MF ),

δ4 = λ4/λ1(ρCP T0 M exp(1/α))/(M QMR1YF0), Q =
4∑

i=1

Qi ,

β1 = YR10 Q

CP T0
, β2 = YR20 QMR2

CP T0 MF
, qi = Qi/Q, i = {2, 3, 4} .

The analysis of the system is usually based on these governing equations result-
ing from the differential balance laws. The temporal evolution of a chemical reaction
scheme is derived numerically from the simultaneous integration of a set of differ-
ential equations, each one representing the concentration of a specie in the system,
and also the reactant temperature. However, prediction of most practical applications
using these equations require detailed information of the physics of the problem. Thus,
most analysis are based on simplifying mathematical approximations. For example,
safe simplifications such as the adiabatic approximation, which corresponds to χ = 0
or 
 = ∞ and the isothermal approximation (χ = ∞) are readily used. If we assume
adiabatic approximation, where the heat production rate greatly exceeds the rate of
heat loss to the surrounding, then the system of reactions can be approximated by the
system of spatially homogeneous ordinary non-linear differential equations [19,20]

3.1 Method of solutions (adiabatic case)

The method of asymptotic analysis is a formal series expansion which has the property
that truncating the series after a finite number of terms provides an approximation to a
given function as the argument tend towards a particular, often infinite point. In many
problems, we seek an asymptotic expansion as α → 0 of a function u(α, t), where t
is an independent variable. The asymptotic behaviour of the function with respect to
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α may depend upon t , in which case we may say that the expansion is non-uniform.
In keeping with [14] and [19], we take an appropriate expansion in the activation
energy asymptotic limit(α → 0) for X , Y , Z and θ in the form

θ = θ0 + αθ1 + h.o.t,

X = δ1 + αX1 + h.o.t,

Y = αsY1 + h.o.t,

Z = α p Z1 + h.o.t, (3.7)

where h.o.t refers to ‘higher order terms’ and α is a small parameter, where s
and p are numerical exponents to be given specific values later. After the substitution
of (3.7), (3.5) becomes

d X1

dτ
= 0, ⇒ X1 = 0, (3.8)

dY1

dτ
= −1

δ1
(δ1 + X1)Y1 exp(θ0) + 2δ2

μ
α pm−s Zm

1 exp(rθ0) − 2δ4α
sY 2

1 ,

(3.9)
d Z1

dτ
= μ

δ1
αs−p(δ1 + X1)Y1 exp(θ0) − mδ2α

p(m−1)Zm
1 exp(rθ0) − δ3 Z1,

(3.10)
dθ0

dτ
+ α

dθ1

dτ
= q1

δ1
(δ1 + αX1)Y1 exp(θ0)α

s−1 + q2

μ
δ2α

pm−1 Zm
1 exp(rθ0)

+q3

μ
δ3α

p−1 Z1 + q4δ4α
2s−1Y 2

1 . (3.11)

On inserting (3.7) into Eq. (3.6), we obtain

θ0(0) = 0, X1(0) = 0, Y1(0) = β1 and Z1(0) = β2, (3.12)

where β1 and β2 are very small numbers, which implies that at the onset of reaction,
radical concentration is not absolutely zero [18]. Equation (3.9) may have confirm
known approximation(the pool chemical approximation) or neglect of fuel in analysis
due to negligible change [2,20]. We shall now collect like orders for the Eqs. (3.9)–
(3.12) for different choices of p, s and m.

3.2 Case I (m = 1, q1 → 0)

If we let m = p = s = 1, then (3.9)–(3.12) become

dY1

dτ
= −Y1 exp(θ0) + 2

δ2

μ
exp(rθ0)Z1, (3.28)

d Z1

dτ
= μY1 exp(θ0) − δ2

μ
exp(rθ0)Z1 − δ3 Z1, (3.29)
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dθ0

dτ
= q1Y1 exp(θ0) + q2δ2

μ
exp(rθ0)Z1 + q3δ3

μ
Z1. (3.30)

Suppose heat liberated by the propagation reaction(I ) is negligible(q1 → 0) and that
μ is very small that(μ2 → 0) [26], then (3.28) when divided by (3.30) gives

d Z1

dθ0
= −μ(δ2 exp(rθ0) + δ3)

q2δ2 exp(rθ0) + q3δ3
, (3.31)

which on integration gives

Z1 = μ

r
ln

[
D0 exp(−r/q3θ0) (q2δ2 exp(rθ0) + q3δ3)

1
q3

− 1
q2

]
, (3.32)

where D0 is a constant of integration. Using the initial condition Z1(0) = β2, (3.32)
becomes

Z1 = μ

r
ln

[
exp

(
rβ2

μ

)
exp(−r/q3θ0)

(
q2δ2 exp(rθ0) + q3δ3

q2δ2 + q3δ3

) 1
q3

− 1
q2

]
. (3.33)

On inserting (3.32) into (3.30), we obtain the expression

τ =
∫ θ

0

rds

(q2δ2 exp(rs) + q3δ3) ln

[
exp(rβ2/μ) exp(−r/q3s)(P)

1
q3

− 1
q2

] , (3.34)

where P =
(

q2δ2 exp(rθ0)+q3δ3
q2δ2+q3δ3

)
. The expression for ignition time (τ = τcr )

τcr =
∫ ∞

0

rds

(q2δ2 exp(rs) + q3δ3) ln

[
exp(rβ2/μ) exp(−r/q3s)(P)

1
q3

− 1
q2

] . (3.35)

3.3 Case II (m = 1, q1, q2 → 0)

In another consideration, it is established that branching steps (II), which are mostly
endothermic competes with the termination steps (III and IV), which are exothermic,
it is sufficient to assume that the bulk of heat released to the system is supplied by q3
and q4 ([3] and [20] ). After assuming that q1, q2 → 0, and dividing (3.28) by (3.30)
we obtain

d Z1

dθ0
= −μ(δ2 exp(rθ0) + 2δ3)

q3δ3
, (3.36)
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which on integration gives

Z1 = −μ

q3δ3

(
δ2

r
exp(rθ0) + δ3θ0

)
+ constant.

Using the initial condition Z1(0) = β2, then

Z1 = −μ

rq3δ3
(1 − exp(rθ0)) +

(
β2 − μ

q3
θ

)
. (3.37)

When (3.37) is substituted into (3.30), we obtain

dθ0

dτ
= q3δ3

μ

[
μδ2

rq3δ3
(1 − exp(rθ0)) + β2 − μ

q3
θ0

]
,

and the time(τ ) is expressed as

τ = μ

q3δ3

∫ θ0 ds[
μδ2/(rq3δ3) (1 − exp(rs)) + β2 − μ

q3
s
] . (3.38)

The expression for the ignition time is

τcr = μ

q3δ3

∫ ∞

0

dθ0[
μδ2/(rq3δ3) (1 − exp(rθ0)) + β2 − μ/q3θ0

] . (3.39)

4 Non-adiabatic system

We consider a reactive exothermic system, which releases heat to the surrounding
environment. In order to obtain analytical solution and in keeping with tradition, we
assume the ‘pool approximation’ for the reactant, otherwise the changing reactant
concentration has to be considered. Suppose we take guidance from experimental and
numerical data in flame analysis, which shows that at least close to the flammability
limit the radical level is very low, suggesting that the radicals are in steady state ([17],
pg. 63 and [6], pg. 174). Then the system of Eqs. (3.5) reduce to

dY

dτ
= − exp

(
θ

1 + αθ

)
Y + 2δ2

μ
exp

(
rθ

1 + αθ

)
Z − 2δ4Y 2 = 0,

d Z

dτ
= μ exp

(
θ

1 + αθ

)
Y − δ2 exp

(
rθ

1 + αθ

)
Z − δ3 Z = 0,

α

q1

dθ

dτ
= exp

(
θ

1 + αθ

)
Y + q2δ2

q1μ
exp

(
rθ

1 + αθ

)
Z + q3δ3

q1μ
Z + q4δ4

q1
Y 2 − δ10

δ1

θ.

(4.0)
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After solving the first two equations of (4.0) simultaneously, the steady state solutions
Si (Yi , Zi ) are

S1(0, 0), S2(β1, β2) and S3

[
1

2δ4
S exp

(
θ

1 + αθ

)
,

μ

2δ4
S exp

(
2θ

1 + αθ

)]
,

where S =
(

δ2 exp
(

rθ
1+αθ

)
−δ3

δ2 exp
(

rθ
1+αθ

)
+δ3

)
. The trivial steady state S1 coincides with the one-step

reaction(Semenov model), while the steady states S2 and S3 depict the chain-thermal
ignition system.

4.1 Case I: S2

After inserting the steady state S2 into the energy Eq. (4.0), we have

α

q1β1

dθ

dτ
= exp

(
θ

1 + αθ

)
+ q12 exp

(
rθ

1 + αθ

)
+ q34 − 1



θ, (4.1)

where for simplicity

q12 = q2δ2

q1β1μ
, q34 = q3δ3β2

q1β1μ
+ q4δ4β1

q1
, and

δ10

δ1β2
= 1

Let the steady state form of (4.1) for the existence of critical conditions be

exp

(
θ

1 + αθ

)
+ q12 exp

(
rθ

1 + αθ

)
+ q34 − 1



θ ≡ Q+ − Q−, (4.2)

where Q+ and Q− refers to the rate of heat produced and the rate heat loss to the
environment respectively. Applying the Semenov analysis on Eq. (4.2), the criterion
for the onset of thermal ignition are identified by the relations [27]

Q+ = Q−, (4.3)
d Q+
dθ

= d Q−
dθ

. (4.4)

Thus,

exp

(
θ

1 + αθ

)
+ q12 exp

(
rθ

1 + αθ

)
+ q34 − 1



θ = 0, (4.5)

and

exp

(
θ

1 + αθ

)
+ rq12 exp

(
rθ

1 + αθ

)
− 1



(1 + αθ)2 = 0. (4.6)
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For convenience, it is possible to take the first two terms of the quadratic form of the
exponential function [15]

1 + nθ

1 + αθ
+ q12

[
1 + nrθ

1 + αθ

]
+ q34 − 1



θ = 0, (4.7)

and

1 + nθ

1 + αθ
+ rq12

[
1 + nrθ

1 + αθ

]
− 1



(1 + αθ)2 = 0, (4.8)

where n is a constant(n �= 1). Solving (4.7) and (4.8) simultaneously,

Aθ2 − Bθ + C = 0, (4.9)

where

A =
[
n(1 + r2q12) + α(1 − 2n)(1 + rq12)

]
, B = (1 − n)(1 + rq12) − 3αC,

and C = 1 + q12 + q34.

After taking binomial expansion, the solution of (4.9) becomes

θ = θI = C

B
or θ = θE = B

A
− C

B
. (4.10)

Fig. 1 θI versus q34, for some α and q21 = 0.1 for Eq. (3.35)
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Fig. 2 θI versus q34, for some α and r = 2 for Eq. (3.39)

Being the only realistic critical temperature, the asymptotic expansion of θI in α in
(4.10),

θI = 1 + q12 + q34

(1 − n)(1 + rq12)

[
1 + 3α

(
1 + q12 + q34

(1 − n)(1 + rq12)

)]
. (4.11)

In the simplified case of n = q12 = q34 = 0, we obtain the well known results
obtained by Semenov (θcr = 1 and 
 = e−1). By substituting (4.11) into (4.5), the
expression for the critical Semenov parameter thus becomes,

1


cr
=

exp
(

θI
1+αθI

)
+ q12 exp

(
rθI

1+αθI

)
+ q34

θI
(4.12)

4.2 Case II: S3

In this case, after a similar analysis, and assuming that for small δ3(S = 1), the
criterion for thermal criticality (4.3–4.4) leads to

(1 + q ′
34) exp

(
2θ

1 + αθ

)
+ q ′

12 exp

(
(r + 2)θ

1 + αθ

)
− 1



θ = 0, (4.13)
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and

2(1 + q ′
34) exp

(
2θ

1 + αθ

)
+ rq ′

12 exp

(
(r + 2)θ

1 + αθ

)
− 1



(1 + αθ)2 = 0, (4.14)

where

q ′
12 = 2q2δ2

q1
, q ′

34 = 2q3δ3

q1
+ q4

2q1
, and

2δ10δ4

δ1
= 1.

We combine (4.13) and (4.14) to get the quadratic equation

Eθ2 − Fθ + G = 0, (4.15)

where

E =
[
4nα − 2α − 4n)(1 + q ′

34) + (2nαr + 4αn − rα − 2α − nr2 − 2nr − 4n)
]
,

F = (1 − n)
[
2(1 + q ′

34) + (r + 2)q ′
21

] − 3αG, where G = 1 + q ′
12 + q ′

34.

The critical or ignition temperature is

θI = (1 + q ′
12 + q ′

34)/(1 − n)[
2(1 + q ′

34) + (r + 2)q ′
21

]
[

1 + 3α(1 + q ′
12 + q ′

34)/(1 − n)[
2(1 + q ′

34) + (r + 2)q ′
21

]
]

, (4.16)

while the expression for the critical Semenov parameter is

1


cr
=

(1 + q ′
34) exp

(
2θI

1+αθI

)
+ q ′

12 exp
(

(r+2)θI
1+αθI

)

θI
. (4.17)

In practise [28], it is interesting to see how the steady state temperature (θ ) varies with
the bifurcation parameter (
) in Eqs. (4.12) and (4.17). The plot of 
cr against θI for
Eqs. (4.11) and (4.17) are presented in Figs. 3 and 4 respectively.

5 Conclusion

The analysis of thermal explosion characteristics for a five-step kinetics model has
been considered. The pertubation method technique has been used to solve the homo-
geneous adiabatic system, while the classical Semenov procedure has been exploited
to obtain the critical temperature and parameter for thermal ignition. The influence
of various parameters embedded in the system on the ignition time (τcr ), the ignition
temperature (θI ) and the critical Semenov parameter (
cr ) have been investigated.

In line with the physics of the problem, for the adiabatic case, Figs. 5 and 6 show
that as the heat contribution (q3) by the termination reaction step increases, the igni-
tion time reduces for some activation energy ratios (r ). By comparision, in the absence
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Fig. 3 
cr versus θI for some q34, q2 = 0.1 and α = 0.125 for Eq. (4.12)

Fig. 4 
cr versus θI for some q34, q2 = 0.1 and α = 0.125 for Eq. (4.17)
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Fig. 5 τcr versus q3, for some r and q2 = 0.1 for Eq. (3.35)

of other non-exothermic energy inputs (q1, q2 → 0), Fig. 6 shows that the ignition
delay time is lower than (Fig. 5). Hence, endothermic reactions may serve as an inhib-
itor, which delays the occurrence of thermal ignition. In the non-adiabatic case, after
exploiting the steady state approximation for the intermediate species, expressions
for the ignition temperature and the critical heat loss parameter have been obtained.
Figures 1 and 2 show the plots of the ignition temperature against the heat con-
tribution due to the termination reaction steps (q34). In line with expectation, it is
observed that that the ignition temperature (θI ) increases with increasing adiabatic
temperature parameter (α). The variations of the bifurcation parameters (
) with the
steady state temperature (θI ) are shown in Figs. 3 and 4. In these figures, the curves
conforms with established results [28], particularly the special case of q12 = q34 = 0
(broken curves). Furthermore, it is also evident that the maximum subcritical tempera-
ture rise lies in the neighbourhood of θI = 1. It is observed that as the heat contribution
from the exothermic heat source increases, the heat transfer parameter increases con-
siderably. Inspite of this, thermal ignition is expected to occur when the rate of heat
produced can no longer keep pace with that of heat loss. In addition, Fig. 4 shows that
the temperature dependent steady state intermediate species concentration (case I I )
leads to a comparatively high heat transfer parameter as compared with the constant
steady state intermediate species concentration in Fig. 3 (case I ). This shows that a
reactive system with highly exothermic reactions steps attains ignition or criticality
faster with high heat transfer. Apart from validating known results, this study would
be very useful in safety applications in the industry and opens more doors for future
works.
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Fig. 6 τcr versus r , for some β2 and q2 = 0.2 for Eq. (3.35)
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Appendix

In the present work, we use the available data from methane combustion experiment
in literature [8,18,22,29] and [30, Appendix 1], the plot of τcr in (3.35) and (3.39) for
some parameters embedded in the system are shown in Figs. 5–2.

λi= 0.1 s−1, E1 = 1.1473E(5) Jmol−1, Q1= 1.0E(5) Jmol−1, Q2 = 5.0E(5) Jmol−1,

Q3 = Q4 = 3.0E(10) Jmol−1, MF = 1.6E(−2), MR1 = 1.5E(−2), MR2 = 1.0
E(−2), YR10 = MR20 = 0.01, S = 7.6766E(−2) m2, V = 2.0E(−3) m3, ρ =
0.038 kgm−3, CP = 638.5 Jkg−1 K−1, χ = 39.0798 Js−1 m−2 K−1, T0 = 600 K,

R = 8.31441 JK/mol.

References

1. S.O. Ajadi, V. Gol’dshtein, Critical behaviour in a three step reactions kinetics model. Combust. Theory
Model. 13, 1–16 (2009)

2. I. Gonda, B.F. Gray, The unified thermal and chain branching model of hydrocarbon oxidation in a
well stirred contonous flow reactor. Proc. R. Soc. Lond. A 389, 133–152 (1983)

123



98 J Math Chem (2012) 50:82–98

3. C.K. Law, Extinction of counterflow diffusion flames with branching termination chain mechanism:
theory and experiment. in Proceeding of a Conference, eds. by J.D. Buckmaster, T. Takeno, 1987.
Lecture Notes in Physics, 299 (Juneau, Alaska, 1987), pp. 147–156

4. N. Peters, Numerical and asymptotic analysis of systematically reduced reaction scheme for hydro-
carbon flames. in Proceedings of the Simulation of Combustion Phenomena, eds. by R. Glowinski, B.
Larrouturou, R. Temam, 1985. (Sophia-Antipolis, France, 1985), pp. 90–109

5. N. Peters, in Reduced kinetics mechanisms and asymptotic approximations for methane-air
flames, ed. by M.D. Smooke Reducing Mechanism. Lecture Notes in Physics, 384 (Springer, New
York, 1991), pp. 49–85

6. N. Peters, M.D. Smooke, Fluid dynamic-chemical interaction at the lean flammability limit. Combust.
and Flame 60, 171–182 (1985)

7. N. Peters, F.A. Williams, The asymptotic structure of stoichiometric methane—air flames. Combust.
and Flame 68, 185–207 (1987)

8. N. Peters, Shape Fifteen Lectures on Laminar and Turbulent Combustion (Ercoftac Summer School
Aachen, Germany, 1992)

9. K. Seshadri, N. Peters, The inner structure of methane—air flame. Combust. and Flame 81, 96–
118 (1990)

10. R.Y. Tam, G.S.S. Ludford, Kinetic extinction: a three step model. Combust. and Flame 72, 27–34 (1988)
11. T. Boddington, P. Gray, G.C. Wake, Shape theory of thermal explosions with simultaneous parallel

reactions I. Found. One-Dimens. Case. Proc. R. Soc. Lond. A 393, 85–100 (1984)
12. RY. Tam, The lean flammability limit: a four step model. Combust. and Flame 72, 35–43 (1988)
13. S.O. Ajadi, V. Gol’dshtein, S.S. Okoya, The effect of variable pre-exponential factor on the ignition

time of a homogeneous system. Int. Comm. Heat Mass Transf. 31, 143–150 (2004)
14. R.O. Ayeni, On the explosion of chain thermal reaction. J. Austr. Maths. Soc. (Series B) 24, 194–

202 (1982)
15. P.G. Gray, M.J. Harper, Thermal explosion: induction period and temperature changes before sponta-

neous ignition. Trans. Faraday Soc. 581–590 (1959)
16. C.H. Yang, B.F. Gray, On the slow oxidation of hydrocarbon and cool flames. The J. Phys.

Chem. 73, 3395–3406 (1969)
17. J.F. Griffiths, Reduced kinetic models and their application to practical combustion systems. Prog.

Energy Combust. Sci. 21, 25–107 (1995)
18. B.F. Gray, C.H. Yang, On the Lotka-Frank-Kamenetskii isothermal theory of cool flames. Combust.

Flame 13, 20–22 (1969)
19. S.S. Okoya, The branched chain explosion time and slow temperature rise for homogeneous reacting

system. Int. Comm. Heat Mass Transf. 28, 995–1004 (2001)
20. M.I. Nelson, E. Balakrishnan, Autoignition of hydrocarbons in a batch reactor: analysis of a reduced

model. Appl. Math. Lett. 21, 866–871 (2008)
21. S.O. Ajadi, O. Nave, Approximate critical conditions in thermal explosion theory for two-step kinetic

model. J. Math. Chem. 47(2), 790–807 (2009)
22. S.O. Ajadi, V. Gol’dshtein, Solutions of reduced kinetics mechanism arising from combustion theory.

PhD Dissertation, Obafemi Awolowo University, Nigeria 2005
23. S.S. Okoya, A branched-chain thermal explosion with heat loss. Combust. and Flame 144, 410–

414 (2006)
24. J.W. Moore, R.G. Pearson, Shape Kinetics and mechanism: a study of homogeneous chemical reac-

tions (Wiley, New York, 1981)
25. G.S.S. Ludford, Combustion: basic equations and peculiar asymptotics. J. de Mecanique 16, 531–

551 (1977)
26. J.B. Umland, J.M. Bellama, General Chemistry, 3rd edn (Brookes/Cole, California, 1999)
27. Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, Shape The Mathematical Theory

of Combustion and Explosion (Plenum, New York, 1985)
28. J.F. Griffiths, J.A. Barnard, Shape Flame and Combustion (Chapman & Hall, New York, 1995)
29. M.I. Nelson, H.S. Sidhu, Bifurcation phenomena for an oxidation reaction in a continously stirred tank

reactor I. Adiabatic operation. J. Math. Chem. 31, 155–186 (2002)
30. M. Wullenkord, (The solar thermal decomposition of methane); electronic file available at http://www.

pre.ethz.ch/sollab/pdf/01_Solar_Fuels/04_Wullenkord_Sollab_2006.pdf

123

http://www.pre.ethz.ch/sollab/pdf/01_Solar_Fuels/04_Wullenkord_Sollab_2006.pdf
http://www.pre.ethz.ch/sollab/pdf/01_Solar_Fuels/04_Wullenkord_Sollab_2006.pdf

	Thermal explosion characteristics in a reduced  kinetics model
	Abstract
	1 Introduction
	2 Problem formulation
	3 Dimensionless homogeneous reaction system
	3.1 Method of solutions (adiabatic case)
	3.2 Case I (m=1, q1 rightarrow 0)
	3.3 Case II (m=1, q1, q2 rightarrow 0)

	4 Non-adiabatic system
	4.1 Case I: S2
	4.2 Case II: S3

	5 Conclusion
	Acknowledgments
	Appendix
	References


